CHEMISTRY STUDY MATERIALS FOR CLASS 12 (NCERT Questions - Answers of Chapter - 14) GANESH KUMAR DATE:- 27/10/2021

Biomolecules

1	What are carbohydrates? Give examples						2									
•	Carbobydrat	esare	nolvh		/aldeł		sorke	tone	sorth	ne sui	nstan	CPS V	vhich	aives	stheseupon	-
	hvdrolvsis F	xamp	le: alu	icose :	fructo	se m	altose	e lact	ose s	SUCIC	se si	arch	cellu	llose	alvcogen etc.	
2	How are carb	e carbohydrates classified?					3									
								Carb	ohvo	drate	S					-
	Reducina										-					-
	sugars						~									
	Non		Sugars Non sugars													
	reducing															
	sugars															
	Aldoses									Oligo)					
	Ketoses	IVIO	no sa	ccnar	aides				sac	chari	des					
		S	es	es	Se				-	_	~		_	_	Poly	
		ose	ros	tos	(OS	σ		etra	ente	ехэ	epta	cta	ano	eca	sacchrides	
		Tri	Tet	oen	He			te	đ	Ч	he	0	ĉ	σ		
3	What are sur	nars a	nd no		ars?											2
5	Sugarsareth	ecarh	ohvdr	ates o		oinw	atero	rveta	Ilinei	nnat	urea	ndew	/pot ir	tast	Frample	2
	Sugars are the carbonyurates; soluble in water crystalline in nature and sweet in taste Example															
	in nature and	l taste	eless.	Exam	ple :st	tarch	cellu	lose	alvcc	aen	etc.	ooraa		vator,	amorphouo	
4	What are red	at are reducing sugars? Give example					2									
	The sugars which can reduce Tollen's reagent, Benedict's reagent and Fehling's reagent are reducing															
	sugars. These contain a free hydroxyl group on anomeric carbon.															
	Example glue	cose f	ructos	se ma	ltose l	actos	se									
5	Whatarenon-reducing sugars? Give example (Is sucrose a reducing sugar or not? Give reason.)						2									
	The sugars which cannot reduce Tollen's reagent, Benedict's reagent and Fehling's reagent are non-															
	reducing sugars. These do not contain a free aldehydic group (aldehydic groups are bonded).															
	Example : sucrose															
6	What are mo	nosac	chara	aides?	Give	exar	nples	_		_						2
	Monosaccha	raides	sareth	nesim	plesu	gars	which	dono	otuno	dergo	hydr	olysi	s.Exa	ample	e:glucose	
7	tructose, Galactose						0									
1		JUSAC		es? G		kamp	les	bydr		to ~:		to 10	mark		haraida unita	2
	Evample: ma	ues al	lactor	Sugar	s whic	n unc	lergo	nyara	JIYSIS	to gi	ve z		mone	JSacc	charaide units.	
8	What are dis	mpie: maitose lactose sucrose etc.						2								
0	Disaccharide	accila	the si		which	und	erao	hydro	lveie	to di	ve 2	mon	0520	chara	aide units	2
	Example: ma	altose	lactos	Se SUC	rose e	etc.	ergo i	iyurc	ny 313	to gi	VU Z	mon	5500			
9	What are pol	vsacc	haride	es? G	ve ex	ampl	es									
-	Polysacchari	desar	rethe	carboł	nydrat	eswł	nichu	nder	qohv	drolv	sisto	give	more	than	10 (manv)	
	monosaccha	raide	units.	Exam	ple: s	tarch	, cell	ulose	, gly	coge	n etc				· · · · · · · · · · · · · · · · · · ·	
10	Give an exar	nple c	of aldo	hexos	se											1
	Glucose or G	alacto	ose													

11	Give example of ketohexose		1
	Fructose		
12	How is glucose prepared?		2
	$C_{12}H_{22}O_{11} + H_2O \xrightarrow{H^+} C_6H_{12}O_6 + C_6H_{12}O_6$	$(C_6H_{10}O_5)_n$ + $nH_2O \xrightarrow{H^*} nC_6H_{12}O_6$	
	Sucrose Glucose Fructose	Starch or cellulose Glucose	
13	Elucidate the structure of glucose		5
	(i) Molecular formula	$-C_6H_{12}O_6$	
	(ii) Suggestion of straight chain		
		CHO	
		$(CHOH)_4 \longrightarrow CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$	
	(iii) Confirmation of carbonyl (> $C = O$) group	CH ₂ OH <i>n</i> -Hexane	
	CHO CH = N - OH	CINO CIN ^{CN}	
	(CHOH), NH ₂ OH (CHOH),	СНО СНУ ОН	
		$(CHOH)_4 \longrightarrow (CHOH)_4$	
	CH ₂ OH CH ₂ OH	 СН-ОН СН-ОН	
	(iv) Confirmation of the presence of carbonyl		
	group as aldehydic group	сно соон	
		(CHOH) Br ₂ water (CHOH)	
	(v) Confirmation of the presence of five $-OH$	СH ₂ OH СH ₂ OH	
	aroups	Gluconic acid	
	gioups	CHO CHO	
		$(CHOH)_4$ Acetic anhydride $(CH-O-C-CH_3)_4$	
		Acetylation O	
	(vi) Indication of the presence of a primary alc	ohol ^{CH2OH} CH2OHC-CH3	
		Glucose penta-acetate CHO COOH COOH	
		HNO3 HNO3	
		$(CHOH)_4$ $(Oxidation)$ $(CHOH)_4$ $(Oxidation)$ $(CHOH)_4$	
	The course to a figuration of all social is given by	сн2он соон сн2он	
	I he correct configuration of glucose is given by	Saccharic acid Gluconic acid	
	Kilivanissyntesis	СНО	
	T inyumooyntoolo	Н ————————————————————————————————————	
		НО ———— Н	
		н ———— он	
		н ———— он	
		I CH ₂ OH	
14	Gluconic acid on oxidation with HNO_3 gives sacch glucose?	aric acid. What does it indicate about the structure of	1
	Confirmation of the presence of primary alcoh	olic group	

15	Mention the structural features of open chain structure of glucose	2
	It has 1 aldehyde group, 1 primary alcohol group and 4 secondary alcoholic groups	
16	Mention the structural features of open chain structure of fructose	2
	It has 1 ketone group, 2 primary alcohol group and 3 secondary alcoholic groups	
17	Mention demerits of open chain structure of glucose	3
	The following reactions of glucose cannot be explained by its open-chain structure.	
	1. Aldehydes give 2, 4-DNP test, Schiff's test, and react with NaHSO ₄ to form the hydrogen	
	supplite addition product. However, glucose does not undergo these reactions.	
	2. I nepenta-acetate of glucose does not react with hydroxylamine. This indicates that a free	
	-CHO group is absent from glucose.	
	3. Glucose exists in two crystalline forms, α and β .	
18	How do you explain the absence of aldehyde group of the pentaacetate of D – glucose?	2
	The aldehyde group is involved in formation of cyclic hemiacetal with secondary alcoholic group of	
	5^{th} carbon. In pentaacetate of D-glucose, all 5-OH groups are acetylated, therefore, it does not	
	form an open chain structure, and does not react with NH_2OH . This fact indicates absence of	
	aldehyde group inglucose.	
	But, D-glucose reacts with hydroxylamine (NH_2OH) to form an oxime because of the presence of	
	α open chain structure in an aqueous medium, which then reacts with NH ₂ OH to give an oxime	
19	What is glycosidic bond / linkage?	1
	Glycosidic linkage – Linkage between two monosaccharide units through oxygen atom	
20	Name the sugar present in case sugar	1
	Sucrose	-
21	What are the expected products of bydrolysis of sucrose	1
	α –ducose and β - fructose	-
22	What are the expected products of hydrolysis of lactose	1
	$B = Galactose and \beta_{-} dlucose$	-
23	Name the sugar present in milk sugar	1
0.4	L'ACIOSE	
24	Name the components of starch	1
24	Name the components of starch Amylose and amylopectin	1
24	Lactose Name the components of starch Amylose and amylopectin Name water soluble component of starch	1
24	Lactose Name the components of starch Amylose and amylopectin Name water soluble component of starch Amylose	1
24	Lactose Name the components of starch Amylose and amylopectin Name water soluble component of starch Amylose Name water insoluble component of starch	1 1 1 1 1
24 25 26	Lactose Name the components of starch Amylose and amylopectin Name water soluble component of starch Amylose Name water insoluble component of starch Amylopectin	1 1 1

28	Name the storage polysaccharide in animals				1		
	Glycogen(animal starch)						
29	Name the structural polysaccharide in p	lants			1		
	cellulose						
30	Write Haworth structure for α glucose/monomer in cellulose. (β glucose)/ α fructose/ β fructose						
	$\alpha - D - (+) - Glucopyranose$ CH_2OH H H H H H H H H H	anose	HOH ₂ C O CH ₂ OH H OH H A - D - (-) - Fructofuranose	HOH ₂ C OH H H H CH ₂ OH H β - D - (-) - Fructofuranose			
31	Write Haworth structure of sucrose/ ma	ltose /	lactose		2		
	Structure of sucrose: $ \begin{array}{c} 6\\ CH_2OH\\ H\\ H$		Structure of Maltose: $ \begin{array}{c} 6\\ CH_2OH\\ H\\ H\\ H\\ OH\\ H\\ H$				
32	Why cellulose cannot be used as food b	y hựmg	an beings?	$\beta-D-Glucose$	1		
	Human saliva do not contain the enzyme the	natcan	hydrolysesβ1-4linkage	espresent in cellulose			
33	What is glycogen? How does it differ from	m starc	ch		3		
	Glycogenisapolymerofα-glucoselinked the point ofbranching	byα1-4	4 glycosidicbond and α ⁴	1-6glycosidicbondat			
	starch		glyc	cogen			
	Storage polysaccharide in plants		Storage polysacchari	des in animals			
	Made of two compenents 1) amylose 2 amylopectin)	Made of one compon	ent			

	Amylopectin has branched structure. The	Glycogen has branched structure. The		
	trequency of branching is at every 30 glucose units	frequency of branching is at every 10 glucose units		
34	Mention two differences between starch and ce	ellulose	2	
	starch	cellulose		
	Storage polysaccharide in plants	Structural polysaccharides in plants	-	
	Made of two compenents 1) amylose 2) amylopectin	Made of one component		
	Amylose is linear chain of α-glucose linked by α 1-4 glycosidic bond	cellulose is linear chain of β – glucose linked by β 1-4 glycosidic bond		
	Amylopectin has branched structure. The frequency of branching is at every 30 glucose units			
35	Name the products obtained when proteins are hydrolysed? What do you understand by this reaction?			
	Proteins upon hydrolysis form amino acids. This i	ndicates that proteins are made of amino acids		
36	What are amino acids? How many naturally occurring amino acids are present in proteins			
	These are the organic compounds containing both amino and carboxyl group on α carbon a			
	These are the building blocks (monomers) of proteins. There are 20 naturally occurring amino			
	acids			
37	Write the general structure of amino acids			
	NH ₂			
	α-Amino acid (R= side chain)			
38	Write the structure of an optically inactive amin	oacid	1	
	H – CH – COOH			
	I NH ₂			
39	Name an amino acid containing sulphur		1	
	Cysteine ,methionine			
40	Name an amino acid which is acidic		1	
	Aspateric acid, Glutamic acid			
41	Name an amino acid which is basic		1	
	Glutamine,Lysine			
42	Name an amino acid which contains heterocyc	lic nucleus	1	
	Proline, histidine			
43	How amino acids are classified based on dieta	ry requirement?	2	
	Based of dietary requirement they are classified into essential and Non-essential amino acids:			

	Essential amino acids: Amino acids that cannot be synthesised in the body, and must be obtained	
	through diet Example – Valine, leucine, isoleucine	
	Non-essential amino acids: Amino acids that can be synthesised in the body	
	Example-Glycine, alanine, glutamic acid Non-essential amino acids:	
44	What is zwitter ion? Write its general structure	2
	These are the amino acid dipolar ions, carrying both positive and negative charges. These moves	
	neither towards cathode nor towards anode in electric field	
	$R - CH - C - O - H \xrightarrow{\sim} R - CH - C - O^{-}$	
	NH_2 NH_3	
	(Zwitter ion)	
45	What is isoelectric point	1
	The pH at which amino acids acts as zwitter ions in aqueous solution is called isoelectric pH/point	
46	What is peptide bond? How is it formed?	2
	It is the amide bond present between two amino acids units in peptides and protein. It is formed by	
	eliminating on molecule of water from α -COOH group and α -NH ₂ group of two amino acid	
	$H_2N - CH_2 - COOH + H_2N - CH - COOH$	
	-H ₂ O CH ₃	
	$\mathbf{H} \cdot \mathbf{N} = \mathbf{C} \mathbf{H} \cdot \mathbf{C} \mathbf{C} = \mathbf{N} \mathbf{H} - \mathbf{C} \mathbf{H} = \mathbf{C} \mathbf{O} \mathbf{O} \mathbf{H}$	
	$H_2 N = CH_2 = CO = NH$	
	Peptide linkage CH ₃	
	Glycylalanine (Gly-Ala)	
47	What is poly peptide?	1
	Poly peptides are the polymers of (n)amino acids containing 10 to 50 amino acids in chain linked by	
	(n-1) peptide bonds	
48	How many peptide bonds are present in a pentapeptide?	
	4	
49	What are proteins?	1
	proteins' are the polymers of (n) amino acids containing more than 50 amino acids in chain linked by	
	(n-1) peptide bonds	
50	Name a hormone which controls the carbohydrate metabolism.	1
	insulin	
51	How are proteins classified based on their molecular shape and solubility?	3
	Based on the molecular shape, proteins are classified into two types	
	Fibrous proteins, polypeptide chains run parallel and are held together by hydrogen and disulphide	
	bonds. These are insoluble in water. These are also called structural proteins	
	Example: keratin (hair and nail), actin and myosin (muscles) and collagen(cartilage)	
	Globular proteins In Polypeptide chains coil around, giving a spherical shape. These are soluble in	
	water. These are also called functional proteins. Example: albumin, globulin etc	

52	Write a note on structure of proteins		4		
	Structures and shapes of proteins are studied at four different	levels: primary, secondary, tertiary			
	and quaternary.				
	Primary structure of proteins: Contains one or more polypeptic	de chains, and each chain has amino			
	acids linked with each other in a specific sequence. This seque	ence of amino acids represents the			
	primary structure of proteins.				
	Secondary structure of proteins: Shape in which a long polype	eptide chain can exist; two types of			
	secondary structures: α -helix, β -pleated sheet, stabilised b	by hydrogen bonds			
	<u>α-Tertiary structure of proteins</u> : Overall folding of the polype	ptidechains; results in fibrous and			
	globular proteins; secondary and tertiary structures of proteins are stabilised by hydrogen bonds,				
	disulphide linkages, van der Waals forces and electrostation	c forces.			
	Quaternary structure of proteins: Spatial arrangement of su	bunits, each containing two or more			
50	polypeptide chains		0		
53	What is denaturation of proteins?		2		
	Denaturation means loss of biological activity of proteins	due to the unfolding of globules and			
	uncoiling of helix. Denaturation takes place due to action of h	eat, addition of electrolytes etc			
F 4	Example – Coagulation of egg white on boiling, curdling of	milk			
54	What are enzymes? Give example		2		
	Enzymes are biocatalysts. Specific for a particular reaction	on and for a particular substrate			
	C II O Maltase 2C II O				
	$C_{12}H_{22}O_{11} \longrightarrow 2C_6H_{12}O_6$				
	Maltose Glucose For example maltase catalyses hydrolysis of maltose				
55	What are vitamins? How are these classified?		3		
	Vitamins are micronutrients that take part in metabolic proc	ess to produce energy and growth			
	These are classified as water soluble vitamins (vitamin B com	plex and vitamin C) fat soluble			
	vitamins (vitamin A.D.K.E.)				
56	Mention the source and deficiency syndrome of vitaminA		1		
	Sources	Deficiency diseases			
	Fish liver oil, carrots, butter and milk	Xerophthalmia, night blindness			
57	Mention the source and deficiency syndrome of Vitamin	B42	1		
	Sources	Deficiency diseases	-		
	Meat fish egg and curd	Pernicious anaemia			
58	Mention the source and deficiency syndrome of Vitamin (1		
50		Deficiency diseases			
	Sources				
	Citrus truits, amia and green leafy vegetables	Scurvy			
59	Mention the source and deticiency syndrome of Vitamin		1		
	Coursee	Deficiency diseases	1		
	Sources	Denciency diseases			

60	Name the products when nucleic acids are hydrolys	ed step wise	2	
	Nucleic acids \rightarrow nucleotides			
	Nucleotides \rightarrow nucleosides + phosphoric acid			
	Nucleosides \rightarrow pentose sugar + heterocyclic bases	(purine and pyrimidine)		
61	How nucleoside and nucleotide are formed?		2	
	1) Nucleoside is formed when N-base gets attached	to 1 position of pentose sugar.		
	N-base + Pentose sugar \longrightarrow nucleoside	I South		
	2) Nucleotide is formed when nucleoside is linked t	o phosphoric acid at 5^{th} position of		
	nentose sugar			
	Nucleoside + H_2PO_4			
2	What are puckels acids?		1	
2	Nucleic acids are the polymore of publications linker	hy 2.5 phosphodiastar band	•	
3	Muchele acids are the polymers of nucleotides linked	by 5-5 phosphodiester bond	3	
5			5	
		KNA		
	Contains de- oxy ribose sugar	Contains ribose sugar		
	Bases are A,G,C,I	Bases are A.G.C.U		
	Has double helical structure	Has single stranded structure		
	Present in nucleus of the cell	Present in cytoplasm		
	Hereditary material	Involved in protein synthesis		
		Messenger RNA(m-RNA)		
		Ribosomal RNA(r-RNA)		
		Transfer RNA(t-RNA)		
4	Name a. The sugar moiety present in DNA			
	b. Nitrogenous base present only in DNA	, but not in RNA.		
	a) de-oxyribosesugar			
	b)Thymine			
5	Write the structure of ribose sugar / deoxy-ribose sugar	ıgar	2	
	$HOH_2 \overset{5}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{$			
	он он он н			
6	Name any 18-Biological functions of nucleic acids		3	
	1. DNA is chief chemical as reserve genetic info	ormation.		
	2. DNA is chiely responsible for identity of a sp	ecies.		
	3. DNA is capable of self replication during cell	division.		
	4 Important function of RNA is in protein synthesis in the cells. Message for the protein			
	synthesis is in DNA but various RNAs take part in protein synthesis			
7	What are hormones? Give an example for each type	of hormone		
•	what are normones? Give an example for each type			

	a) Polypeptide hormones	
	b) Amino acid derivatives	
	c) Steroid hormones	
	Hormones are biochemical messengers produced by endocrine glands.	
	a) Polypeptide hormonesinsulin/ glucagons	
	b) Amino acid derivatives Thyroxine/Epinephrine	
	c) Steroid hormones Testosterone/Estradiol/progesterone	
68	Write the function of the following hormones :	
	a) Insulin	
	b) Thyroxine	
	c) Estrogen and androgen	
	a) Insulin: Maintains blood sugar level	
	b) Thyroxine: Growth and development	
	c) Estrogen and androgen: Development of secondary sex characters	